Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles.

نویسندگان

  • Michael Babcock
  • Greg T Macleod
  • Jennifer Leither
  • Leo Pallanck
چکیده

The N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (SNAP) are cytosolic factors that promote vesicle fusion with a target membrane in both the constitutive and regulated secretory pathways. NSF and SNAP are thought to function by catalyzing the disassembly of a SNAP receptor (SNARE) complex consisting of membrane proteins of the secretory vesicle and target membrane. Although studies of NSF function have provided strong support for this model, the precise biochemical role of SNAP remains controversial. To further explore the function of SNAP, we have used mutational and transgenic approaches in Drosophila to investigate the effect of altered SNAP dosage on neurotransmitter release and SNARE complex metabolism. Our results indicate that reduced SNAP activity results in diminished neurotransmitter release and accumulation of a neural SNARE complex. Increased SNAP dosage results in defective synapse formation and a variety of tissue morphological defects without detectably altering the abundance of neural SNARE complexes. The SNAP overexpression phenotypes are enhanced by mutations in other secretory components and are at least partially overcome by co-overexpression of NSF, suggesting that these phenotypes derive from a specific perturbation of the secretory pathway. Our results indicate that SNAP promotes neurotransmitter release and SNARE complex disassembly but inhibits secretion when present at high abundance relative to NSF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic vesicle mobility and presynaptic F-actin are disrupted in a N-ethylmaleimide-sensitive factor allele of Drosophila.

N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the ...

متن کامل

Syntaxin 13, a genetic modifier of mutant CHMP2B in frontotemporal dementia, is required for autophagosome maturation.

Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here we identified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accum...

متن کامل

Role of Munc18-1 in synaptic vesicle and large dense-core vesicle secretion.

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex formation between a vesicle and the target membrane is a central aspect of probably all vesicle fusion reactions. The sec1/munc18 (SM) protein family is also involved in membrane trafficking and fusion events. However, in contrast with the consensus on SNARE protein function, analysis of SM proteins in differe...

متن کامل

Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.

Assembly of the SNARE complex and its disassembly caused by the action of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) and NSF is crucial for the maintenance of vesicular traffic, including fusion of regulated exocytotic vesicles. Various other proteins may also have important roles in the processes leading to membrane fusion via interaction with the SNARE proteins,...

متن کامل

Comparison of Cysteine String Protein (Csp) and Mutant a-SNAP Overexpression Reveals a Role for Csp in Late Steps of Membrane Fusion in Dense-Core Granule Exocytosis in Adrenal Chromaffin Cells

Assembly of the SNARE complex and its disassembly caused by the action of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) and NSF is crucial for the maintenance of vesicular traffic, including fusion of regulated exocytotic vesicles. Various other proteins may also have important roles in the processes leading to membrane fusion via interaction with the SNARE proteins,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 16  شماره 

صفحات  -

تاریخ انتشار 2004